Teacher´s perceptions and experiences regarding the transformation of educational assessment with generative Artificial Intelligence

Authors

  • Walter Giovanni Ortíz Prillwitz Universidad de San Carlos de Guatemala

DOI:

https://doi.org/10.70939/revistadiged.v2iEspecial.46

Keywords:

artificial intelligence, constructivism, educational assessment

Abstract

OBJECTIVE: To understand the perceptions and experiences of university professors regarding the transformation of learning assessment driven by the emergence of Generative Artificial Intelligence. METHOD: An explanatory sequential mixed methods design was used. In the quantitative phase, a survey was conducted to gather perceptions (n=59). In the qualitative phase, semi-structured interviews were conducted with a subsample selected through theoretical sampling with maximum variance criteria (n=10) to explore experiences in depth. An interpretative phenomenological analysis was applied. RESULTS: Most professors have incorporated AI in teaching (80%) and have modified their assessments (71%), although 63% acknowledge difficulties in verifying authenticity. The qualitative analysis revealed that this adoption is experienced with a defensive ethical stance (with strategies such as reduced time and assessment through analysis), a reinvention of assessment methods, and a mix of contradictory emotions (frustration–amazement). Simultaneously, a teaching identity crisis and a training gap are identified, where specific demand (70–75%) exceeds the institutional offer perceived as adequate by 52%. CONCLUSION: Professors’ experiences are associated with a tension between defending ethics and a teaching identity crisis, generating a variety of emotions. They perceive AI’s potential to transform educational assessment but are also aware of associated challenges, such as authenticity. Overcoming these challenges requires specific disciplinary training.

Author Biography

Walter Giovanni Ortíz Prillwitz, Universidad de San Carlos de Guatemala

Estudiante del Doctorado en Innovación y Tecnología Educativa de la Facultad de Humanidades de la Universidad de San Carlos. Maestro en Formulación y Evaluación de Proyectos de la Facultad de Ciencias Económicas de la Universidad de San Carlos. Ingeniero Químico de la Facultad de Ingeniería de la Universidad de San Carlos. Con experiencia en investigaciones relacionadas con Educación, Evaluación de Proyectos.

References

Alkaabi, A., Abdallah, A., Alblooshi, S., Alomari, F., & Alneaimi, S. (2025). ChatGPT in higher education: Opportunities, challenges, and required competencies in the absence of guiding policies. Journal of Education and E-Learning Research, 12(2), 153–164.

https://doi.org/10.20448/jeelr.v12i2.6746 DOI: https://doi.org/10.20448/jeelr.v12i2.6746

Baidoo, D., & Owusu, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1)(7), 52–62. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337484 DOI: https://doi.org/10.61969/jai.1337500

Bozkurt, A., Pazurek, A., & Crompton, H. (2023). Speculative Futures on ChatGPT and Generative Artificial Intelligence (AI): A Collective Reflection from the Educational Landscape. Asian Journal of Distance Education, 18(1), 53–130. https://doi.org/10.5281/zenodo.7636568

Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00411-8 DOI: https://doi.org/10.1186/s41239-023-00411-8

Dahlberg, H., & Dahlberg, K. (2020). Open and Reflective Lifeworld Research: A Third Way. Qualitative Inquiry, 26(5), 458–464.

https://doi.org/10.1177/1077800419836696 DOI: https://doi.org/10.1177/1077800419836696

Eaton, S. E. (2024). Future-proofing integrity in the age of artificial intelligence and neurotechnology: prioritizing human rights, dignity, and equity. In International Journal for Educational Integrity (Vol. 20, Issue 1). BioMed Central Ltd. https://doi.org/10.1007/s40979-024-00175-2 DOI: https://doi.org/10.1007/s40979-024-00175-2

Ellis, R., Han, F., & Cook, H. (2025). Qualitatively different teacher experiences of teaching with generative artificial intelligence. International Journal of Educational Technology in Higher Education, 22(1). https://doi.org/10.1186/s41239-025-00532-2 DOI: https://doi.org/10.1186/s41239-025-00532-2

Giorgi, A., Giorgi, B., & Morley, J. (2017). The Descriptive Phenomenological Psychological Method (pp. 176–192). BK-SAGE. DOI: https://doi.org/10.4135/9781526405555.n11

https://www.researchgate.net/publication/318451180

Koemhong, S., Sok, S., & Heng, K. (2025). Rethinking Assessment in Higher Education in the Age of Generative AI. In Encyclopedia of Educational Innovation (pp. 1–5). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-2262-4_327-1 DOI: https://doi.org/10.1007/978-981-13-2262-4_327-1

Luckin, R., Cukurova, M., Kent, C., & du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100076 DOI: https://doi.org/10.1016/j.caeai.2022.100076

Nezhad, M. S., Abdi, A., & Ahmadi, M. (2025). Exploring the experiences and perceptions of nursing students in utilizing artificial intelligence: a descriptive phenomenological study. BMC Nursing, 24(1). https://doi.org/10.1186/s12912-025-03392-3 DOI: https://doi.org/10.1186/s12912-025-03392-3

Rosales- Veitía, J., Mujica-Lópe, Á., & Camacho-Guzmán, Y. (2024). El método fenomenológico-hermenéutico de Gadamer. Algunos aportes para el abordaje del círculo de la comprensión. Cátedra Villarreal, 12(1), 2311–2212. https://doi.org/10.24039/rcv20241211741

Serrano, J. M., & Pons Parra, R. M. (2011). El Constructivismo hoy: enfoques constructivistas en educación. Revista Electrónica de Investigación Educativa, 13(1), 127. http://redie.uabc.mx/vol13no1/contenido-serranopons.html

Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., Selwyn, N., & Gašević, D. (2022). Assessment in the age of artificial intelligence. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100075 DOI: https://doi.org/10.1016/j.caeai.2022.100075

Tondeur, J., Petko, D., Christensen, R., Drossel, K., Starkey, L., Knezek, G., & Schmidt-Crawford, D. A. (2021). Quality criteria for conceptual technology integration models in education: bridging research and practice. Educational Technology Research and Development, 69(4), 2187–2208. https://doi.org/10.1007/s11423-020-09911-0 DOI: https://doi.org/10.1007/s11423-020-09911-0

Trust, T., & Whalen, J. (2020). Should Teachers be Trained in Emergency Remote Teaching? Lessons Learned from the COVID-19 Pandemic. In Jl. of Technology and Teacher Education (Vol. 28, Issue 2). DOI: https://doi.org/10.70725/307718pkpjuu

Van Manen, M. (2007). Phenomenology of Practice. Phenomenology & Practice, 1(1). https://doi.org/10.29173/pandpr19803 DOI: https://doi.org/10.29173/PANDPR1980

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? In International Journal of Educational Technology in Higher Education (Vol. 16, Issue 1). Springer Netherlands. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Published

2025-10-25

How to Cite

Ortíz Prillwitz, W. G. (2025). Teacher´s perceptions and experiences regarding the transformation of educational assessment with generative Artificial Intelligence . Revista Científica Avances En Ciencia Y Docencia, 2(Especial), 1–13. https://doi.org/10.70939/revistadiged.v2iEspecial.46

Issue

Section

Artículos